This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimdelov.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ) | |
| elimdelov.2 | ⊢ 𝑍 ∈ ( 𝑋 𝐹 𝑌 ) | ||
| Assertion | elimdelov | ⊢ if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimdelov.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ) | |
| 2 | elimdelov.2 | ⊢ 𝑍 ∈ ( 𝑋 𝐹 𝑌 ) | |
| 3 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) = 𝐶 ) | |
| 4 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝑋 ) = 𝐴 ) | |
| 5 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑌 ) = 𝐵 ) | |
| 6 | 4 5 | oveq12d | ⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) = ( 𝐴 𝐹 𝐵 ) ) |
| 7 | 1 3 6 | 3eltr4d | ⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) ) |
| 8 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) = 𝑍 ) | |
| 9 | 8 2 | eqeltrdi | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( 𝑋 𝐹 𝑌 ) ) |
| 10 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝑋 ) = 𝑋 ) | |
| 11 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑌 ) = 𝑌 ) | |
| 12 | 10 11 | oveq12d | ⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) = ( 𝑋 𝐹 𝑌 ) ) |
| 13 | 9 12 | eleqtrrd | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) ) |
| 14 | 7 13 | pm2.61i | ⊢ if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) |