This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Cantor normal form function, which takes as input a finitely supported function from y to x and outputs the corresponding member of the ordinal exponential x ^o y . The content of the original Cantor Normal Form theorem is that for x =om this function is a bijection onto om ^o y for any ordinal y (or, since the function restricts naturally to different ordinals, the statement that the composite function is a bijection to On ). More can be said about the function, however, and in particular it is an order isomorphism for a certain easily defined well-ordering of the finitely supported functions, which gives an alternate definition cantnffval2 of this function in terms of df-oi . (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnf | ⊢ CNF = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( 𝑓 ∈ { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnf | ⊢ CNF | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | con0 | ⊢ On | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | vg | ⊢ 𝑔 | |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | cmap | ⊢ ↑m | |
| 8 | 3 | cv | ⊢ 𝑦 |
| 9 | 6 8 7 | co | ⊢ ( 𝑥 ↑m 𝑦 ) |
| 10 | 5 | cv | ⊢ 𝑔 |
| 11 | cfsupp | ⊢ finSupp | |
| 12 | c0 | ⊢ ∅ | |
| 13 | 10 12 11 | wbr | ⊢ 𝑔 finSupp ∅ |
| 14 | 13 5 9 | crab | ⊢ { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } |
| 15 | cep | ⊢ E | |
| 16 | 4 | cv | ⊢ 𝑓 |
| 17 | csupp | ⊢ supp | |
| 18 | 16 12 17 | co | ⊢ ( 𝑓 supp ∅ ) |
| 19 | 18 15 | coi | ⊢ OrdIso ( E , ( 𝑓 supp ∅ ) ) |
| 20 | vh | ⊢ ℎ | |
| 21 | vk | ⊢ 𝑘 | |
| 22 | cvv | ⊢ V | |
| 23 | vz | ⊢ 𝑧 | |
| 24 | coe | ⊢ ↑o | |
| 25 | 20 | cv | ⊢ ℎ |
| 26 | 21 | cv | ⊢ 𝑘 |
| 27 | 26 25 | cfv | ⊢ ( ℎ ‘ 𝑘 ) |
| 28 | 6 27 24 | co | ⊢ ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) |
| 29 | comu | ⊢ ·o | |
| 30 | 27 16 | cfv | ⊢ ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) |
| 31 | 28 30 29 | co | ⊢ ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) |
| 32 | coa | ⊢ +o | |
| 33 | 23 | cv | ⊢ 𝑧 |
| 34 | 31 33 32 | co | ⊢ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) |
| 35 | 21 23 22 22 34 | cmpo | ⊢ ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 36 | 35 12 | cseqom | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 37 | 25 | cdm | ⊢ dom ℎ |
| 38 | 37 36 | cfv | ⊢ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) |
| 39 | 20 19 38 | csb | ⊢ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) |
| 40 | 4 14 39 | cmpt | ⊢ ( 𝑓 ∈ { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) |
| 41 | 1 3 2 2 40 | cmpo | ⊢ ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( 𝑓 ∈ { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| 42 | 0 41 | wceq | ⊢ CNF = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( 𝑓 ∈ { 𝑔 ∈ ( 𝑥 ↑m 𝑦 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝑥 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |