This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxpsd.1 | ⊢ 𝐴 ∈ V | |
| brtxpsd.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | brtxpsd | ⊢ ( ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd.1 | ⊢ 𝐴 ∈ V | |
| 2 | brtxpsd.2 | ⊢ 𝐵 ∈ V | |
| 3 | df-br | ⊢ ( 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ) | |
| 4 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 5 | 4 | elrn | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ↔ ∃ 𝑥 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 〈 𝐴 , 𝐵 〉 ) |
| 6 | brsymdif | ⊢ ( 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 〈 𝐴 , 𝐵 〉 ↔ ¬ ( 𝑥 ( V ⊗ E ) 〈 𝐴 , 𝐵 〉 ↔ 𝑥 ( 𝑅 ⊗ V ) 〈 𝐴 , 𝐵 〉 ) ) | |
| 7 | brv | ⊢ 𝑥 V 𝐴 | |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | 8 1 2 | brtxp | ⊢ ( 𝑥 ( V ⊗ E ) 〈 𝐴 , 𝐵 〉 ↔ ( 𝑥 V 𝐴 ∧ 𝑥 E 𝐵 ) ) |
| 10 | 7 9 | mpbiran | ⊢ ( 𝑥 ( V ⊗ E ) 〈 𝐴 , 𝐵 〉 ↔ 𝑥 E 𝐵 ) |
| 11 | 2 | epeli | ⊢ ( 𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵 ) |
| 12 | 10 11 | bitri | ⊢ ( 𝑥 ( V ⊗ E ) 〈 𝐴 , 𝐵 〉 ↔ 𝑥 ∈ 𝐵 ) |
| 13 | brv | ⊢ 𝑥 V 𝐵 | |
| 14 | 8 1 2 | brtxp | ⊢ ( 𝑥 ( 𝑅 ⊗ V ) 〈 𝐴 , 𝐵 〉 ↔ ( 𝑥 𝑅 𝐴 ∧ 𝑥 V 𝐵 ) ) |
| 15 | 13 14 | mpbiran2 | ⊢ ( 𝑥 ( 𝑅 ⊗ V ) 〈 𝐴 , 𝐵 〉 ↔ 𝑥 𝑅 𝐴 ) |
| 16 | 12 15 | bibi12i | ⊢ ( ( 𝑥 ( V ⊗ E ) 〈 𝐴 , 𝐵 〉 ↔ 𝑥 ( 𝑅 ⊗ V ) 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ) |
| 17 | 6 16 | xchbinx | ⊢ ( 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 〈 𝐴 , 𝐵 〉 ↔ ¬ ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑥 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 〈 𝐴 , 𝐵 〉 ↔ ∃ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ) |
| 19 | 5 18 | bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ↔ ∃ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ) |
| 20 | exnal | ⊢ ( ∃ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ) | |
| 21 | 3 19 20 | 3bitrri | ⊢ ( ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ↔ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 ) |
| 22 | 21 | con1bii | ⊢ ( ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑅 𝐴 ) ) |