This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxpsd2.1 | ⊢ 𝐴 ∈ V | |
| brtxpsd2.2 | ⊢ 𝐵 ∈ V | ||
| brtxpsd2.3 | ⊢ 𝑅 = ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) | ||
| brtxpsd2.4 | ⊢ 𝐴 𝐶 𝐵 | ||
| Assertion | brtxpsd2 | ⊢ ( 𝐴 𝑅 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd2.1 | ⊢ 𝐴 ∈ V | |
| 2 | brtxpsd2.2 | ⊢ 𝐵 ∈ V | |
| 3 | brtxpsd2.3 | ⊢ 𝑅 = ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) | |
| 4 | brtxpsd2.4 | ⊢ 𝐴 𝐶 𝐵 | |
| 5 | 3 | breqi | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐴 ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) 𝐵 ) |
| 6 | brdif | ⊢ ( 𝐴 ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) 𝐵 ↔ ( 𝐴 𝐶 𝐵 ∧ ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 𝐶 𝐵 ∧ ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ) ) |
| 8 | 4 7 | mpbiran | ⊢ ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ) |
| 9 | 1 2 | brtxpsd | ⊢ ( ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) |
| 10 | 8 9 | bitri | ⊢ ( 𝐴 𝑅 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) |