This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxpsd.1 | |- A e. _V |
|
| brtxpsd.2 | |- B e. _V |
||
| Assertion | brtxpsd | |- ( -. A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> A. x ( x e. B <-> x R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd.1 | |- A e. _V |
|
| 2 | brtxpsd.2 | |- B e. _V |
|
| 3 | df-br | |- ( A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) ) |
|
| 4 | opex | |- <. A , B >. e. _V |
|
| 5 | 4 | elrn | |- ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. ) |
| 6 | brsymdif | |- ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) ) |
|
| 7 | brv | |- x _V A |
|
| 8 | vex | |- x e. _V |
|
| 9 | 8 1 2 | brtxp | |- ( x ( _V (x) _E ) <. A , B >. <-> ( x _V A /\ x _E B ) ) |
| 10 | 7 9 | mpbiran | |- ( x ( _V (x) _E ) <. A , B >. <-> x _E B ) |
| 11 | 2 | epeli | |- ( x _E B <-> x e. B ) |
| 12 | 10 11 | bitri | |- ( x ( _V (x) _E ) <. A , B >. <-> x e. B ) |
| 13 | brv | |- x _V B |
|
| 14 | 8 1 2 | brtxp | |- ( x ( R (x) _V ) <. A , B >. <-> ( x R A /\ x _V B ) ) |
| 15 | 13 14 | mpbiran2 | |- ( x ( R (x) _V ) <. A , B >. <-> x R A ) |
| 16 | 12 15 | bibi12i | |- ( ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) <-> ( x e. B <-> x R A ) ) |
| 17 | 6 16 | xchbinx | |- ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x e. B <-> x R A ) ) |
| 18 | 17 | exbii | |- ( E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> E. x -. ( x e. B <-> x R A ) ) |
| 19 | 5 18 | bitri | |- ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x -. ( x e. B <-> x R A ) ) |
| 20 | exnal | |- ( E. x -. ( x e. B <-> x R A ) <-> -. A. x ( x e. B <-> x R A ) ) |
|
| 21 | 3 19 20 | 3bitrri | |- ( -. A. x ( x e. B <-> x R A ) <-> A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B ) |
| 22 | 21 | con1bii | |- ( -. A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> A. x ( x e. B <-> x R A ) ) |