This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brdom3.2 | ⊢ 𝐵 ∈ V | |
| Assertion | brdom5 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom3.2 | ⊢ 𝐵 ∈ V | |
| 2 | 1 | brdom3 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 3 | alral | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ) | |
| 4 | 3 | anim1i | ⊢ ( ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 5 | 4 | eximi | ⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 6 | 2 5 | sylbi | ⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 7 | inss2 | ⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐵 × 𝐴 ) | |
| 8 | dmss | ⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐵 × 𝐴 ) → dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ dom ( 𝐵 × 𝐴 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ dom ( 𝐵 × 𝐴 ) |
| 10 | dmxpss | ⊢ dom ( 𝐵 × 𝐴 ) ⊆ 𝐵 | |
| 11 | 9 10 | sstri | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐵 |
| 12 | 11 | sseli | ⊢ ( 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → 𝑥 ∈ 𝐵 ) |
| 13 | inss1 | ⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝑓 | |
| 14 | 13 | ssbri | ⊢ ( 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 → 𝑥 𝑓 𝑦 ) |
| 15 | 14 | moimi | ⊢ ( ∃* 𝑦 𝑥 𝑓 𝑦 → ∃* 𝑦 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) |
| 16 | 12 15 | imim12i | ⊢ ( ( 𝑥 ∈ 𝐵 → ∃* 𝑦 𝑥 𝑓 𝑦 ) → ( 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → ∃* 𝑦 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 17 | 16 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) |
| 18 | relinxp | ⊢ Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) | |
| 19 | 17 18 | jctil | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 → ( Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 20 | dffun7 | ⊢ ( Fun ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ↔ ( Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 → Fun ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 22 | 21 | funfnd | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 → ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 23 | rninxp | ⊢ ( ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) | |
| 24 | 23 | biimpri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 → ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) |
| 25 | 22 24 | anim12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) ) |
| 26 | df-fo | ⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 ↔ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) ) | |
| 27 | 25 26 | sylibr | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 ) |
| 28 | vex | ⊢ 𝑓 ∈ V | |
| 29 | 28 | inex1 | ⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∈ V |
| 30 | 29 | dmex | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∈ V |
| 31 | 30 | fodom | ⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 → 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 32 | ssdomg | ⊢ ( 𝐵 ∈ V → ( dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐵 → dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 ) ) | |
| 33 | 1 11 32 | mp2 | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 |
| 34 | domtr | ⊢ ( ( 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 35 | 33 34 | mpan2 | ⊢ ( 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → 𝐴 ≼ 𝐵 ) |
| 36 | 27 31 35 | 3syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ 𝐵 ) |
| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ 𝐵 ) |
| 38 | 6 37 | impbii | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |