This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brdom3.2 | ⊢ 𝐵 ∈ V | |
| Assertion | brdom4 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom3.2 | ⊢ 𝐵 ∈ V | |
| 2 | 1 | brdom3 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 3 | mormo | ⊢ ( ∃* 𝑦 𝑥 𝑓 𝑦 → ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) | |
| 4 | 3 | alimi | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 → ∀ 𝑥 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) |
| 5 | alral | ⊢ ( ∀ 𝑥 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) | |
| 6 | 4 5 | syl | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) |
| 7 | 6 | anim1i | ⊢ ( ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 8 | 7 | eximi | ⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 9 | 2 8 | sylbi | ⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 10 | inss2 | ⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐵 × 𝐴 ) | |
| 11 | dmss | ⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐵 × 𝐴 ) → dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ dom ( 𝐵 × 𝐴 ) ) | |
| 12 | 10 11 | ax-mp | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ dom ( 𝐵 × 𝐴 ) |
| 13 | dmxpss | ⊢ dom ( 𝐵 × 𝐴 ) ⊆ 𝐵 | |
| 14 | 12 13 | sstri | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐵 |
| 15 | 14 | sseli | ⊢ ( 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → 𝑥 ∈ 𝐵 ) |
| 16 | 10 | rnssi | ⊢ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ran ( 𝐵 × 𝐴 ) |
| 17 | rnxpss | ⊢ ran ( 𝐵 × 𝐴 ) ⊆ 𝐴 | |
| 18 | 16 17 | sstri | ⊢ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐴 |
| 19 | 18 | sseli | ⊢ ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 20 | inss1 | ⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝑓 | |
| 21 | 20 | ssbri | ⊢ ( 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 → 𝑥 𝑓 𝑦 ) |
| 22 | 19 21 | anim12i | ⊢ ( ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 𝑓 𝑦 ) ) |
| 23 | 22 | moimi | ⊢ ( ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 𝑓 𝑦 ) → ∃* 𝑦 ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 24 | df-rmo | ⊢ ( ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 𝑓 𝑦 ) ) | |
| 25 | df-rmo | ⊢ ( ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) | |
| 26 | 23 24 25 | 3imtr4i | ⊢ ( ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) |
| 27 | 15 26 | imim12i | ⊢ ( ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) → ( 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 28 | 27 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) |
| 29 | relinxp | ⊢ Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) | |
| 30 | 28 29 | jctil | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ( Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 31 | dffun9 | ⊢ ( Fun ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ↔ ( Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) | |
| 32 | 30 31 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → Fun ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 33 | 32 | funfnd | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 34 | rninxp | ⊢ ( ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) | |
| 35 | 34 | biimpri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 → ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) |
| 36 | 33 35 | anim12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) ) |
| 37 | df-fo | ⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 ↔ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 ) |
| 39 | vex | ⊢ 𝑓 ∈ V | |
| 40 | 39 | inex1 | ⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∈ V |
| 41 | 40 | dmex | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∈ V |
| 42 | 41 | fodom | ⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 → 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 43 | 38 42 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 44 | ssdomg | ⊢ ( 𝐵 ∈ V → ( dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐵 → dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 ) ) | |
| 45 | 1 14 44 | mp2 | ⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 |
| 46 | domtr | ⊢ ( ( 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 47 | 43 45 46 | sylancl | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ 𝐵 ) |
| 48 | 47 | exlimiv | ⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ 𝐵 ) |
| 49 | 9 48 | impbii | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |