This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffun9 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | brelrn | ⊢ ( 𝑥 𝐴 𝑦 → 𝑦 ∈ ran 𝐴 ) |
| 5 | 4 | pm4.71ri | ⊢ ( 𝑥 𝐴 𝑦 ↔ ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
| 6 | 5 | mobii | ⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
| 7 | df-rmo | ⊢ ( ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) |
| 9 | 8 | ralbii | ⊢ ( ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) |
| 10 | 9 | anbi2i | ⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) ) |
| 11 | 1 10 | bitri | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) ) |