This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Linearity property of bra for addition. (Contributed by NM, 23-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | braadd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his2 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) | |
| 2 | 1 | 3comr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) |
| 3 | hvaddcl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) | |
| 4 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) |
| 6 | 5 | 3impb | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) |
| 7 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) | |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) |
| 9 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) ) | |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) ) |
| 11 | 8 10 | oveq12d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) |
| 12 | 2 6 11 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) ) |