This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bramul | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 ·ℎ 𝐶 ) ) = ( 𝐵 · ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 ·ℎ 𝐶 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐶 ·ih 𝐴 ) ) ) | |
| 2 | 1 | 3comr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 ·ℎ 𝐶 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐶 ·ih 𝐴 ) ) ) |
| 3 | hvmulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 4 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐵 ·ℎ 𝐶 ) ·ih 𝐴 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐵 ·ℎ 𝐶 ) ·ih 𝐴 ) ) |
| 6 | 5 | 3impb | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐵 ·ℎ 𝐶 ) ·ih 𝐴 ) ) |
| 7 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) ) | |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 · ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) = ( 𝐵 · ( 𝐶 ·ih 𝐴 ) ) ) |
| 10 | 2 6 9 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 ·ℎ 𝐶 ) ) = ( 𝐵 · ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) ) |