This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brafnmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | brafval | ⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( bra ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
| 4 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 5 | brafn | ⊢ ( 𝐵 ∈ ℋ → ( bra ‘ 𝐵 ) : ℋ ⟶ ℂ ) | |
| 6 | hfmmval | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( bra ‘ 𝐵 ) : ℋ ⟶ ℂ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) |
| 8 | his5 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) | |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) |
| 10 | 9 | an32s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) |
| 11 | braval | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐵 ) ) | |
| 12 | 11 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐵 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) |
| 14 | 10 13 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) |
| 15 | 14 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) |
| 16 | 7 15 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
| 17 | 3 16 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) ) |