This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brafnmul | |- ( ( A e. CC /\ B e. ~H ) -> ( bra ` ( A .h B ) ) = ( ( * ` A ) .fn ( bra ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 2 | brafval | |- ( ( A .h B ) e. ~H -> ( bra ` ( A .h B ) ) = ( x e. ~H |-> ( x .ih ( A .h B ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( A e. CC /\ B e. ~H ) -> ( bra ` ( A .h B ) ) = ( x e. ~H |-> ( x .ih ( A .h B ) ) ) ) |
| 4 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 5 | brafn | |- ( B e. ~H -> ( bra ` B ) : ~H --> CC ) |
|
| 6 | hfmmval | |- ( ( ( * ` A ) e. CC /\ ( bra ` B ) : ~H --> CC ) -> ( ( * ` A ) .fn ( bra ` B ) ) = ( x e. ~H |-> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. CC /\ B e. ~H ) -> ( ( * ` A ) .fn ( bra ` B ) ) = ( x e. ~H |-> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) ) |
| 8 | his5 | |- ( ( A e. CC /\ x e. ~H /\ B e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
|
| 9 | 8 | 3expa | |- ( ( ( A e. CC /\ x e. ~H ) /\ B e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
| 10 | 9 | an32s | |- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
| 11 | braval | |- ( ( B e. ~H /\ x e. ~H ) -> ( ( bra ` B ) ` x ) = ( x .ih B ) ) |
|
| 12 | 11 | adantll | |- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( ( bra ` B ) ` x ) = ( x .ih B ) ) |
| 13 | 12 | oveq2d | |- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
| 14 | 10 13 | eqtr4d | |- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) |
| 15 | 14 | mpteq2dva | |- ( ( A e. CC /\ B e. ~H ) -> ( x e. ~H |-> ( x .ih ( A .h B ) ) ) = ( x e. ~H |-> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) ) |
| 16 | 7 15 | eqtr4d | |- ( ( A e. CC /\ B e. ~H ) -> ( ( * ` A ) .fn ( bra ` B ) ) = ( x e. ~H |-> ( x .ih ( A .h B ) ) ) ) |
| 17 | 3 16 | eqtr4d | |- ( ( A e. CC /\ B e. ~H ) -> ( bra ` ( A .h B ) ) = ( ( * ` A ) .fn ( bra ` B ) ) ) |