This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brab2dd.1 | ⊢ ( 𝜑 → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ) | |
| brab2dd.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| brab2dd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) | ||
| Assertion | brab2dd | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brab2dd.1 | ⊢ ( 𝜑 → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ) | |
| 2 | brab2dd.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | brab2dd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) | |
| 4 | df-br | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) | |
| 5 | 1 | eleq2d | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ) ) |
| 6 | 4 5 | bitrid | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ) ) |
| 7 | elopab | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ) | |
| 8 | 6 7 | bitrdi | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ) ) |
| 9 | simpl | ⊢ ( ( 𝜑 ∧ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ) → 𝜑 ) | |
| 10 | eqcom | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ↔ 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ) | |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 11 12 | opth | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 14 | 10 13 | sylbb1 | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 → ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 15 | 14 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ) → ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 16 | simprrl | ⊢ ( ( 𝜑 ∧ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ) → ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) | |
| 17 | 3 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) |
| 18 | 9 15 16 17 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) |
| 19 | 18 | ex | ⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) |
| 20 | 19 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) |
| 22 | simprl | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) | |
| 23 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑈 ) | |
| 24 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 25 | 3 2 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |
| 27 | 23 24 26 | copsex2dv | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |
| 28 | 21 22 27 | bibiad | ⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) ) ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |
| 29 | 8 28 | bitrd | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |