This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brab2dd.1 | |- ( ph -> R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) |
|
| brab2dd.2 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
| brab2dd.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) ) |
||
| Assertion | brab2dd | |- ( ph -> ( A R B <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brab2dd.1 | |- ( ph -> R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) |
|
| 2 | brab2dd.2 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
| 3 | brab2dd.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) ) |
|
| 4 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
| 5 | 1 | eleq2d | |- ( ph -> ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) ) |
| 6 | 4 5 | bitrid | |- ( ph -> ( A R B <-> <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) ) |
| 7 | elopab | |- ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) ) |
|
| 8 | 6 7 | bitrdi | |- ( ph -> ( A R B <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) ) ) |
| 9 | simpl | |- ( ( ph /\ ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) ) -> ph ) |
|
| 10 | eqcom | |- ( <. x , y >. = <. A , B >. <-> <. A , B >. = <. x , y >. ) |
|
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | opth | |- ( <. x , y >. = <. A , B >. <-> ( x = A /\ y = B ) ) |
| 14 | 10 13 | sylbb1 | |- ( <. A , B >. = <. x , y >. -> ( x = A /\ y = B ) ) |
| 15 | 14 | ad2antrl | |- ( ( ph /\ ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) ) -> ( x = A /\ y = B ) ) |
| 16 | simprrl | |- ( ( ph /\ ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) ) -> ( x e. C /\ y e. D ) ) |
|
| 17 | 3 | biimpa | |- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ ( x e. C /\ y e. D ) ) -> ( A e. U /\ B e. V ) ) |
| 18 | 9 15 16 17 | syl21anc | |- ( ( ph /\ ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) ) -> ( A e. U /\ B e. V ) ) |
| 19 | 18 | ex | |- ( ph -> ( ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) -> ( A e. U /\ B e. V ) ) ) |
| 20 | 19 | exlimdvv | |- ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) -> ( A e. U /\ B e. V ) ) ) |
| 21 | 20 | imp | |- ( ( ph /\ E. x E. y ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) ) -> ( A e. U /\ B e. V ) ) |
| 22 | simprl | |- ( ( ph /\ ( ( A e. U /\ B e. V ) /\ ch ) ) -> ( A e. U /\ B e. V ) ) |
|
| 23 | simprl | |- ( ( ph /\ ( A e. U /\ B e. V ) ) -> A e. U ) |
|
| 24 | simprr | |- ( ( ph /\ ( A e. U /\ B e. V ) ) -> B e. V ) |
|
| 25 | 3 2 | anbi12d | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( ( x e. C /\ y e. D ) /\ ps ) <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |
| 26 | 25 | adantlr | |- ( ( ( ph /\ ( A e. U /\ B e. V ) ) /\ ( x = A /\ y = B ) ) -> ( ( ( x e. C /\ y e. D ) /\ ps ) <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |
| 27 | 23 24 26 | copsex2dv | |- ( ( ph /\ ( A e. U /\ B e. V ) ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |
| 28 | 21 22 27 | bibiad | |- ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ( ( x e. C /\ y e. D ) /\ ps ) ) <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |
| 29 | 8 28 | bitrd | |- ( ph -> ( A R B <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |