This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: <. B , C >. and <. D , E >. are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossxrncnvssrres | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( 〈 𝐵 , 𝐶 〉 ≀ ( 𝑅 ⋉ ( ◡ S ↾ 𝐴 ) ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝐶 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝐸 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cossxrnres | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( 〈 𝐵 , 𝐶 〉 ≀ ( 𝑅 ⋉ ( ◡ S ↾ 𝐴 ) ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 ◡ S 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 ◡ S 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ) ) | |
| 2 | brcnvssr | ⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑢 ◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢 ) |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑢 ◡ S 𝐶 ∧ 𝑢 𝑅 𝐵 ) ↔ ( 𝐶 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐵 ) ) |
| 5 | brcnvssr | ⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢 ) ) | |
| 6 | 5 | elv | ⊢ ( 𝑢 ◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢 ) |
| 7 | 6 | anbi1i | ⊢ ( ( 𝑢 ◡ S 𝐸 ∧ 𝑢 𝑅 𝐷 ) ↔ ( 𝐸 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐷 ) ) |
| 8 | 4 7 | anbi12i | ⊢ ( ( ( 𝑢 ◡ S 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 ◡ S 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ↔ ( ( 𝐶 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝐸 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐷 ) ) ) |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 ◡ S 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 ◡ S 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝐶 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝐸 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐷 ) ) ) |
| 10 | 1 9 | bitrdi | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( 〈 𝐵 , 𝐶 〉 ≀ ( 𝑅 ⋉ ( ◡ S ↾ 𝐴 ) ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝐶 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝐸 ⊆ 𝑢 ∧ 𝑢 𝑅 𝐷 ) ) ) ) |