This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: <. B , C >. and <. D , E >. are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossxrnres | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( 〈 𝐵 , 𝐶 〉 ≀ ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres2 | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) | |
| 2 | 1 | cosseqi | ⊢ ≀ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ≀ ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) |
| 3 | 2 | breqi | ⊢ ( 〈 𝐵 , 𝐶 〉 ≀ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) 〈 𝐷 , 𝐸 〉 ↔ 〈 𝐵 , 𝐶 〉 ≀ ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) 〈 𝐷 , 𝐸 〉 ) |
| 4 | opex | ⊢ 〈 𝐵 , 𝐶 〉 ∈ V | |
| 5 | opex | ⊢ 〈 𝐷 , 𝐸 〉 ∈ V | |
| 6 | br1cossres | ⊢ ( ( 〈 𝐵 , 𝐶 〉 ∈ V ∧ 〈 𝐷 , 𝐸 〉 ∈ V ) → ( 〈 𝐵 , 𝐶 〉 ≀ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐷 , 𝐸 〉 ) ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( 〈 𝐵 , 𝐶 〉 ≀ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐷 , 𝐸 〉 ) ) |
| 8 | brxrn | ⊢ ( ( 𝑢 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) | |
| 9 | 8 | el3v1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) |
| 10 | brxrn | ⊢ ( ( 𝑢 ∈ V ∧ 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐷 , 𝐸 〉 ↔ ( 𝑢 𝑅 𝐷 ∧ 𝑢 𝑆 𝐸 ) ) ) | |
| 11 | 10 | el3v1 | ⊢ ( ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐷 , 𝐸 〉 ↔ ( 𝑢 𝑅 𝐷 ∧ 𝑢 𝑆 𝐸 ) ) ) |
| 12 | 9 11 | bi2anan9 | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐷 , 𝐸 〉 ) ↔ ( ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ∧ ( 𝑢 𝑅 𝐷 ∧ 𝑢 𝑆 𝐸 ) ) ) ) |
| 13 | an2anr | ⊢ ( ( ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ∧ ( 𝑢 𝑅 𝐷 ∧ 𝑢 𝑆 𝐸 ) ) ↔ ( ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐷 , 𝐸 〉 ) ↔ ( ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ) ) |
| 15 | 14 | rexbidv | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝐷 , 𝐸 〉 ) ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ) ) |
| 16 | 7 15 | bitrid | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( 〈 𝐵 , 𝐶 〉 ≀ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ) ) |
| 17 | 3 16 | bitr3id | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( 〈 𝐵 , 𝐶 〉 ≀ ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) 〈 𝐷 , 𝐸 〉 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐸 ∧ 𝑢 𝑅 𝐷 ) ) ) ) |