This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: <. B , C >. and <. D , E >. are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossxrncnvssrres | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( `' _S |` A ) ) <. D , E >. <-> E. u e. A ( ( C C_ u /\ u R B ) /\ ( E C_ u /\ u R D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cossxrnres | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( `' _S |` A ) ) <. D , E >. <-> E. u e. A ( ( u `' _S C /\ u R B ) /\ ( u `' _S E /\ u R D ) ) ) ) |
|
| 2 | brcnvssr | |- ( u e. _V -> ( u `' _S C <-> C C_ u ) ) |
|
| 3 | 2 | elv | |- ( u `' _S C <-> C C_ u ) |
| 4 | 3 | anbi1i | |- ( ( u `' _S C /\ u R B ) <-> ( C C_ u /\ u R B ) ) |
| 5 | brcnvssr | |- ( u e. _V -> ( u `' _S E <-> E C_ u ) ) |
|
| 6 | 5 | elv | |- ( u `' _S E <-> E C_ u ) |
| 7 | 6 | anbi1i | |- ( ( u `' _S E /\ u R D ) <-> ( E C_ u /\ u R D ) ) |
| 8 | 4 7 | anbi12i | |- ( ( ( u `' _S C /\ u R B ) /\ ( u `' _S E /\ u R D ) ) <-> ( ( C C_ u /\ u R B ) /\ ( E C_ u /\ u R D ) ) ) |
| 9 | 8 | rexbii | |- ( E. u e. A ( ( u `' _S C /\ u R B ) /\ ( u `' _S E /\ u R D ) ) <-> E. u e. A ( ( C C_ u /\ u R B ) /\ ( E C_ u /\ u R D ) ) ) |
| 10 | 1 9 | bitrdi | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( `' _S |` A ) ) <. D , E >. <-> E. u e. A ( ( C C_ u /\ u R B ) /\ ( E C_ u /\ u R D ) ) ) ) |