This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: B and C are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossinres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( 𝑆 ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inres | ⊢ ( 𝑅 ∩ ( 𝑆 ↾ 𝐴 ) ) = ( ( 𝑅 ∩ 𝑆 ) ↾ 𝐴 ) | |
| 2 | 1 | cosseqi | ⊢ ≀ ( 𝑅 ∩ ( 𝑆 ↾ 𝐴 ) ) = ≀ ( ( 𝑅 ∩ 𝑆 ) ↾ 𝐴 ) |
| 3 | 2 | breqi | ⊢ ( 𝐵 ≀ ( 𝑅 ∩ ( 𝑆 ↾ 𝐴 ) ) 𝐶 ↔ 𝐵 ≀ ( ( 𝑅 ∩ 𝑆 ) ↾ 𝐴 ) 𝐶 ) |
| 4 | br1cossres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( ( 𝑅 ∩ 𝑆 ) ↾ 𝐴 ) 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐵 ∧ 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐶 ) ) ) | |
| 5 | brin | ⊢ ( 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐵 ↔ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐵 ) ) | |
| 6 | brin | ⊢ ( 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐶 ↔ ( 𝑢 𝑅 𝐶 ∧ 𝑢 𝑆 𝐶 ) ) | |
| 7 | 5 6 | anbi12i | ⊢ ( ( 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐵 ∧ 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐶 ) ↔ ( ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐵 ) ∧ ( 𝑢 𝑅 𝐶 ∧ 𝑢 𝑆 𝐶 ) ) ) |
| 8 | an2anr | ⊢ ( ( ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐵 ) ∧ ( 𝑢 𝑅 𝐶 ∧ 𝑢 𝑆 𝐶 ) ) ↔ ( ( 𝑢 𝑆 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ( 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐵 ∧ 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐶 ) ↔ ( ( 𝑢 𝑆 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐵 ∧ 𝑢 ( 𝑅 ∩ 𝑆 ) 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) |
| 11 | 4 10 | bitrdi | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( ( 𝑅 ∩ 𝑆 ) ↾ 𝐴 ) 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) ) |
| 12 | 3 11 | bitrid | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( 𝑆 ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 𝑆 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 𝑆 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) ) |