This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: B and C are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossinres | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( S |` A ) ) C <-> E. u e. A ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inres | |- ( R i^i ( S |` A ) ) = ( ( R i^i S ) |` A ) |
|
| 2 | 1 | cosseqi | |- ,~ ( R i^i ( S |` A ) ) = ,~ ( ( R i^i S ) |` A ) |
| 3 | 2 | breqi | |- ( B ,~ ( R i^i ( S |` A ) ) C <-> B ,~ ( ( R i^i S ) |` A ) C ) |
| 4 | br1cossres | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( ( R i^i S ) |` A ) C <-> E. u e. A ( u ( R i^i S ) B /\ u ( R i^i S ) C ) ) ) |
|
| 5 | brin | |- ( u ( R i^i S ) B <-> ( u R B /\ u S B ) ) |
|
| 6 | brin | |- ( u ( R i^i S ) C <-> ( u R C /\ u S C ) ) |
|
| 7 | 5 6 | anbi12i | |- ( ( u ( R i^i S ) B /\ u ( R i^i S ) C ) <-> ( ( u R B /\ u S B ) /\ ( u R C /\ u S C ) ) ) |
| 8 | an2anr | |- ( ( ( u R B /\ u S B ) /\ ( u R C /\ u S C ) ) <-> ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) |
|
| 9 | 7 8 | bitri | |- ( ( u ( R i^i S ) B /\ u ( R i^i S ) C ) <-> ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) |
| 10 | 9 | rexbii | |- ( E. u e. A ( u ( R i^i S ) B /\ u ( R i^i S ) C ) <-> E. u e. A ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) |
| 11 | 4 10 | bitrdi | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( ( R i^i S ) |` A ) C <-> E. u e. A ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) ) |
| 12 | 3 11 | bitrid | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( S |` A ) ) C <-> E. u e. A ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) ) |