This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variant of the Boundedness Axiom bnd that picks a subset z out of a possibly proper class B in which a property is true. (Contributed by NM, 4-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnd2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | bnd2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnd2.1 | ⊢ 𝐴 ∈ V | |
| 2 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 4 | raleq | ⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 5 | raleq | ⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 6 | 5 | exbidv | ⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑤 ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 | 4 6 | imbi12d | ⊢ ( 𝑣 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) ) |
| 8 | bnd | ⊢ ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 9 | 1 7 8 | vtocl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 10 | 3 9 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 11 | vex | ⊢ 𝑤 ∈ V | |
| 12 | 11 | inex1 | ⊢ ( 𝑤 ∩ 𝐵 ) ∈ V |
| 13 | inss2 | ⊢ ( 𝑤 ∩ 𝐵 ) ⊆ 𝐵 | |
| 14 | sseq1 | ⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( 𝑧 ⊆ 𝐵 ↔ ( 𝑤 ∩ 𝐵 ) ⊆ 𝐵 ) ) | |
| 15 | 13 14 | mpbiri | ⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → 𝑧 ⊆ 𝐵 ) |
| 16 | 15 | biantrurd | ⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) ) |
| 17 | rexeq | ⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ∃ 𝑦 ∈ ( 𝑤 ∩ 𝐵 ) 𝜑 ) ) | |
| 18 | rexin | ⊢ ( ∃ 𝑦 ∈ ( 𝑤 ∩ 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 19 | 17 18 | bitrdi | ⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 21 | 16 20 | bitr3d | ⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 22 | 12 21 | spcev | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |
| 23 | 22 | exlimiv | ⊢ ( ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |
| 24 | 10 23 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |