This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of all sets equinumerous to a set A and having the least possible rank is a set. This is the part of the justification of the definition of kard of Enderton p. 222. (Contributed by NM, 14-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kardex | ⊢ { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴 ) ) | |
| 4 | 2 3 | elab | ⊢ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ↔ 𝑥 ≈ 𝐴 ) |
| 5 | breq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴 ) ) | |
| 6 | 5 | ralab | ⊢ ( ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 7 | 4 6 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
| 8 | 7 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
| 9 | 1 8 | eqtri | ⊢ { 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
| 10 | scottex | ⊢ { 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V | |
| 11 | 9 10 | eqeltrri | ⊢ { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ∈ V |