This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sepexi as of 18-Sep-2025. (Contributed by NM, 21-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bm1.3iiOLD.1 | ⊢ ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑥 ) | |
| Assertion | bm1.3iiOLD | ⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bm1.3iiOLD.1 | ⊢ ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑥 ) | |
| 2 | 19.42v | ⊢ ( ∃ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) ↔ ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) ) | |
| 3 | bimsc1 | ⊢ ( ( ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) | |
| 4 | 3 | alanimi | ⊢ ( ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) |
| 5 | 4 | eximi | ⊢ ( ∃ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) |
| 6 | 2 5 | sylbir | ⊢ ( ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) |
| 7 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑧 ) ) ) |
| 9 | 8 | albidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ) ) |
| 10 | 9 | cbvexvw | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ) |
| 11 | 1 10 | mpbi | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) |
| 12 | ax-sep | ⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) | |
| 13 | 11 12 | exan | ⊢ ∃ 𝑧 ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 14 | 6 13 | exlimiiv | ⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) |