This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive ax6v (a weakened version of ax-6 where x and y must be distinct), from Separation ax-sep and Extensionality ax-ext . See ax6 for the derivation of ax-6 from ax6v . (Contributed by NM, 12-Nov-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax6vsep | ⊢ ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-sep | ⊢ ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) | |
| 2 | id | ⊢ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) | |
| 3 | 2 | biantru | ⊢ ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) |
| 4 | 3 | bibi2i | ⊢ ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) ) |
| 5 | 4 | biimpri | ⊢ ( ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
| 6 | 5 | alimi | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
| 7 | ax-ext | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) | |
| 8 | 6 7 | syl | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → 𝑥 = 𝑦 ) |
| 9 | 8 | eximi | ⊢ ( ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → ∃ 𝑥 𝑥 = 𝑦 ) |
| 10 | 1 9 | ax-mp | ⊢ ∃ 𝑥 𝑥 = 𝑦 |
| 11 | df-ex | ⊢ ( ∃ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 ) | |
| 12 | 10 11 | mpbi | ⊢ ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 |