This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-blo | ⊢ BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cblo | ⊢ BLnOp | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cnv | ⊢ NrmCVec | |
| 3 | vw | ⊢ 𝑤 | |
| 4 | vt | ⊢ 𝑡 | |
| 5 | 1 | cv | ⊢ 𝑢 |
| 6 | clno | ⊢ LnOp | |
| 7 | 3 | cv | ⊢ 𝑤 |
| 8 | 5 7 6 | co | ⊢ ( 𝑢 LnOp 𝑤 ) |
| 9 | cnmoo | ⊢ normOpOLD | |
| 10 | 5 7 9 | co | ⊢ ( 𝑢 normOpOLD 𝑤 ) |
| 11 | 4 | cv | ⊢ 𝑡 |
| 12 | 11 10 | cfv | ⊢ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) |
| 13 | clt | ⊢ < | |
| 14 | cpnf | ⊢ +∞ | |
| 15 | 12 14 13 | wbr | ⊢ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ |
| 16 | 15 4 8 | crab | ⊢ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } |
| 17 | 1 3 2 2 16 | cmpo | ⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
| 18 | 0 17 | wceq | ⊢ BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |