This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "two-stage" construction is obtained by first forming the block relation ( R |X.`'E ) and then adjoining elements as "BlockAdj". Combined, it uses the relation ( ( R |X. ``' E ) u. ``' _E ) ` . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blockadjliftmap | ⊢ ( ( 𝑅 ⋉ ◡ E ) AdjLiftMap 𝐴 ) = { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-adjliftmap | ⊢ ( ( 𝑅 ⋉ ◡ E ) AdjLiftMap 𝐴 ) = ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) | |
| 2 | df-mpt | ⊢ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) = { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) } | |
| 3 | dmxrnuncnvepres | ⊢ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } ) | |
| 4 | 3 | eleq2i | ⊢ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↔ 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ) |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ↔ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ) |
| 6 | eldifi | ⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑚 ∈ 𝐴 ) | |
| 7 | ecuncnvepres | ⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) ) |
| 9 | ecxrncnvep2 | ⊢ ( 𝑚 ∈ V → [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) | |
| 10 | 9 | elv | ⊢ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) |
| 11 | 10 | uneq2i | ⊢ ( 𝑚 ∪ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 12 | 8 11 | eqtrdi | ⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) |
| 13 | 12 | eqeq2d | ⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → ( 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↔ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) ) |
| 14 | 13 | pm5.32i | ⊢ ( ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ↔ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) ) |
| 15 | 5 14 | bitri | ⊢ ( ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ↔ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) ) |
| 16 | 15 | opabbii | ⊢ { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) } = { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) } |
| 17 | 1 2 16 | 3eqtri | ⊢ ( ( 𝑅 ⋉ ◡ E ) AdjLiftMap 𝐴 ) = { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) } |