This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "two-stage" construction is obtained by first forming the block relation ( R |X.`'E ) and then adjoining elements as "BlockAdj". Combined, it uses the relation ( ( R |X. ``' E ) u. ``' _E ) ` . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blockadjliftmap | |- ( ( R |X. `' _E ) AdjLiftMap A ) = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-adjliftmap | |- ( ( R |X. `' _E ) AdjLiftMap A ) = ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) |-> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) |
|
| 2 | df-mpt | |- ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) |-> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) = { <. m , n >. | ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) } |
|
| 3 | dmxrnuncnvepres | |- dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( A \ { (/) } ) |
|
| 4 | 3 | eleq2i | |- ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) <-> m e. ( A \ { (/) } ) ) |
| 5 | 4 | anbi1i | |- ( ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) <-> ( m e. ( A \ { (/) } ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) ) |
| 6 | eldifi | |- ( m e. ( A \ { (/) } ) -> m e. A ) |
|
| 7 | ecuncnvepres | |- ( m e. A -> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( m u. [ m ] ( R |X. `' _E ) ) ) |
|
| 8 | 6 7 | syl | |- ( m e. ( A \ { (/) } ) -> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( m u. [ m ] ( R |X. `' _E ) ) ) |
| 9 | ecxrncnvep2 | |- ( m e. _V -> [ m ] ( R |X. `' _E ) = ( [ m ] R X. m ) ) |
|
| 10 | 9 | elv | |- [ m ] ( R |X. `' _E ) = ( [ m ] R X. m ) |
| 11 | 10 | uneq2i | |- ( m u. [ m ] ( R |X. `' _E ) ) = ( m u. ( [ m ] R X. m ) ) |
| 12 | 8 11 | eqtrdi | |- ( m e. ( A \ { (/) } ) -> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( m u. ( [ m ] R X. m ) ) ) |
| 13 | 12 | eqeq2d | |- ( m e. ( A \ { (/) } ) -> ( n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) <-> n = ( m u. ( [ m ] R X. m ) ) ) ) |
| 14 | 13 | pm5.32i | |- ( ( m e. ( A \ { (/) } ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) <-> ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) ) |
| 15 | 5 14 | bitri | |- ( ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) <-> ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) ) |
| 16 | 15 | opabbii | |- { <. m , n >. | ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) } = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } |
| 17 | 1 2 16 | 3eqtri | |- ( ( R |X. `' _E ) AdjLiftMap A ) = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } |