This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of the range Cartesian product with the converse epsilon relation combined with the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmxrnuncnvepres | ⊢ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmuncnvepres | ⊢ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) ) | |
| 2 | dmxrncnvep | ⊢ dom ( 𝑅 ⋉ ◡ E ) = ( dom 𝑅 ∖ { ∅ } ) | |
| 3 | 2 | uneq1i | ⊢ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) = ( ( dom 𝑅 ∖ { ∅ } ) ∪ ( V ∖ { ∅ } ) ) |
| 4 | difundir | ⊢ ( ( dom 𝑅 ∪ V ) ∖ { ∅ } ) = ( ( dom 𝑅 ∖ { ∅ } ) ∪ ( V ∖ { ∅ } ) ) | |
| 5 | unv | ⊢ ( dom 𝑅 ∪ V ) = V | |
| 6 | 5 | difeq1i | ⊢ ( ( dom 𝑅 ∪ V ) ∖ { ∅ } ) = ( V ∖ { ∅ } ) |
| 7 | 3 4 6 | 3eqtr2i | ⊢ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) = ( V ∖ { ∅ } ) |
| 8 | 7 | ineq2i | ⊢ ( 𝐴 ∩ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) ) = ( 𝐴 ∩ ( V ∖ { ∅ } ) ) |
| 9 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ { ∅ } ) ) = ( 𝐴 ∖ { ∅ } ) | |
| 10 | 1 8 9 | 3eqtri | ⊢ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } ) |