This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blin2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 2 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ∈ ran ( ball ‘ 𝐷 ) ) | |
| 3 | simplr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) | |
| 4 | 3 | elin1d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ 𝐵 ) |
| 5 | blss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ) | |
| 6 | 1 2 4 5 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ) |
| 7 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) | |
| 8 | 3 | elin2d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ 𝐶 ) |
| 9 | blss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝐶 ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) | |
| 10 | 1 7 8 9 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) |
| 11 | reeanv | ⊢ ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) ) | |
| 12 | ss2in | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) | |
| 13 | inss1 | ⊢ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐵 | |
| 14 | blf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) | |
| 15 | frn | ⊢ ( ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 → ran ( ball ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) | |
| 16 | 1 14 15 | 3syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ran ( ball ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
| 17 | 16 2 | sseldd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ∈ 𝒫 𝑋 ) |
| 18 | 17 | elpwid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ⊆ 𝑋 ) |
| 19 | 13 18 | sstrid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( 𝐵 ∩ 𝐶 ) ⊆ 𝑋 ) |
| 20 | 19 3 | sseldd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ 𝑋 ) |
| 21 | 1 20 | jca | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ) |
| 22 | rpxr | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ* ) | |
| 23 | rpxr | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ* ) | |
| 24 | 22 23 | anim12i | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
| 25 | blin | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ) | |
| 26 | 21 24 25 | syl2an | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ) |
| 27 | 26 | sseq1d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 28 | ifcl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ ) | |
| 29 | oveq2 | ⊢ ( 𝑥 = if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ) | |
| 30 | 29 | sseq1d | ⊢ ( 𝑥 = if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 31 | 30 | rspcev | ⊢ ( ( if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
| 32 | 31 | ex | ⊢ ( if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 33 | 28 32 | syl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 35 | 27 34 | sylbid | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 36 | 12 35 | syl5 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 37 | 36 | rexlimdvva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 38 | 11 37 | biimtrrid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
| 39 | 6 10 38 | mp2and | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |