This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blin2 | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> D e. ( *Met ` X ) ) |
|
| 2 | simprl | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> B e. ran ( ball ` D ) ) |
|
| 3 | simplr | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. ( B i^i C ) ) |
|
| 4 | 3 | elin1d | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. B ) |
| 5 | blss | |- ( ( D e. ( *Met ` X ) /\ B e. ran ( ball ` D ) /\ P e. B ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ B ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ B ) |
| 7 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> C e. ran ( ball ` D ) ) |
|
| 8 | 3 | elin2d | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. C ) |
| 9 | blss | |- ( ( D e. ( *Met ` X ) /\ C e. ran ( ball ` D ) /\ P e. C ) -> E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) |
|
| 10 | 1 7 8 9 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) |
| 11 | reeanv | |- ( E. y e. RR+ E. z e. RR+ ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) <-> ( E. y e. RR+ ( P ( ball ` D ) y ) C_ B /\ E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) ) |
|
| 12 | ss2in | |- ( ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) -> ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) C_ ( B i^i C ) ) |
|
| 13 | inss1 | |- ( B i^i C ) C_ B |
|
| 14 | blf | |- ( D e. ( *Met ` X ) -> ( ball ` D ) : ( X X. RR* ) --> ~P X ) |
|
| 15 | frn | |- ( ( ball ` D ) : ( X X. RR* ) --> ~P X -> ran ( ball ` D ) C_ ~P X ) |
|
| 16 | 1 14 15 | 3syl | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ran ( ball ` D ) C_ ~P X ) |
| 17 | 16 2 | sseldd | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> B e. ~P X ) |
| 18 | 17 | elpwid | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> B C_ X ) |
| 19 | 13 18 | sstrid | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( B i^i C ) C_ X ) |
| 20 | 19 3 | sseldd | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. X ) |
| 21 | 1 20 | jca | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( D e. ( *Met ` X ) /\ P e. X ) ) |
| 22 | rpxr | |- ( y e. RR+ -> y e. RR* ) |
|
| 23 | rpxr | |- ( z e. RR+ -> z e. RR* ) |
|
| 24 | 22 23 | anim12i | |- ( ( y e. RR+ /\ z e. RR+ ) -> ( y e. RR* /\ z e. RR* ) ) |
| 25 | blin | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( y e. RR* /\ z e. RR* ) ) -> ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) = ( P ( ball ` D ) if ( y <_ z , y , z ) ) ) |
|
| 26 | 21 24 25 | syl2an | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) = ( P ( ball ` D ) if ( y <_ z , y , z ) ) ) |
| 27 | 26 | sseq1d | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) C_ ( B i^i C ) <-> ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) ) ) |
| 28 | ifcl | |- ( ( y e. RR+ /\ z e. RR+ ) -> if ( y <_ z , y , z ) e. RR+ ) |
|
| 29 | oveq2 | |- ( x = if ( y <_ z , y , z ) -> ( P ( ball ` D ) x ) = ( P ( ball ` D ) if ( y <_ z , y , z ) ) ) |
|
| 30 | 29 | sseq1d | |- ( x = if ( y <_ z , y , z ) -> ( ( P ( ball ` D ) x ) C_ ( B i^i C ) <-> ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) ) ) |
| 31 | 30 | rspcev | |- ( ( if ( y <_ z , y , z ) e. RR+ /\ ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) |
| 32 | 31 | ex | |- ( if ( y <_ z , y , z ) e. RR+ -> ( ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
| 33 | 28 32 | syl | |- ( ( y e. RR+ /\ z e. RR+ ) -> ( ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
| 34 | 33 | adantl | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
| 35 | 27 34 | sylbid | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
| 36 | 12 35 | syl5 | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
| 37 | 36 | rexlimdvva | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( E. y e. RR+ E. z e. RR+ ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
| 38 | 11 37 | biimtrrid | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( ( E. y e. RR+ ( P ( ball ` D ) y ) C_ B /\ E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
| 39 | 6 10 38 | mp2and | |- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) |