This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blgt0 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 ∈ ℝ* ) |
| 3 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑃 ∈ 𝑋 ) | |
| 5 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) ) | |
| 6 | 5 | simprbda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝐴 ∈ 𝑋 ) |
| 7 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑃 𝐷 𝐴 ) ∈ ℝ* ) | |
| 8 | 3 4 6 7 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 𝐷 𝐴 ) ∈ ℝ* ) |
| 9 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑅 ∈ ℝ* ) | |
| 10 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝐴 ) ) | |
| 11 | 3 4 6 10 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 ≤ ( 𝑃 𝐷 𝐴 ) ) |
| 12 | 5 | simplbda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 𝐷 𝐴 ) < 𝑅 ) |
| 13 | 2 8 9 11 12 | xrlelttrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 < 𝑅 ) |