This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bl2in | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑄 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 2 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 4 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → 𝑃 ∈ 𝑋 ) | |
| 5 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → 𝑄 ∈ 𝑋 ) | |
| 6 | rexr | ⊢ ( 𝑅 ∈ ℝ → 𝑅 ∈ ℝ* ) | |
| 7 | 6 | ad2antrl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → 𝑅 ∈ ℝ* ) |
| 8 | simprl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → 𝑅 ∈ ℝ ) | |
| 9 | 8 8 | rexaddd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → ( 𝑅 +𝑒 𝑅 ) = ( 𝑅 + 𝑅 ) ) |
| 10 | 8 | recnd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → 𝑅 ∈ ℂ ) |
| 11 | 10 | 2timesd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → ( 2 · 𝑅 ) = ( 𝑅 + 𝑅 ) ) |
| 12 | 9 11 | eqtr4d | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → ( 𝑅 +𝑒 𝑅 ) = ( 2 · 𝑅 ) ) |
| 13 | id | ⊢ ( 𝑅 ∈ ℝ → 𝑅 ∈ ℝ ) | |
| 14 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) | |
| 15 | 2re | ⊢ 2 ∈ ℝ | |
| 16 | 2pos | ⊢ 0 < 2 | |
| 17 | 15 16 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 18 | lemuldiv2 | ⊢ ( ( 𝑅 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑅 ) ≤ ( 𝑃 𝐷 𝑄 ) ↔ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) | |
| 19 | 17 18 | mp3an3 | ⊢ ( ( 𝑅 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) → ( ( 2 · 𝑅 ) ≤ ( 𝑃 𝐷 𝑄 ) ↔ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) |
| 20 | 13 14 19 | syl2anr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ ) → ( ( 2 · 𝑅 ) ≤ ( 𝑃 𝐷 𝑄 ) ↔ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) |
| 21 | 20 | biimprd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ ) → ( 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) → ( 2 · 𝑅 ) ≤ ( 𝑃 𝐷 𝑄 ) ) ) |
| 22 | 21 | impr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → ( 2 · 𝑅 ) ≤ ( 𝑃 𝐷 𝑄 ) ) |
| 23 | 12 22 | eqbrtrd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → ( 𝑅 +𝑒 𝑅 ) ≤ ( 𝑃 𝐷 𝑄 ) ) |
| 24 | bldisj | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ ( 𝑅 +𝑒 𝑅 ) ≤ ( 𝑃 𝐷 𝑄 ) ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑄 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) | |
| 25 | 3 4 5 7 7 23 24 | syl33anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑅 ≤ ( ( 𝑃 𝐷 𝑄 ) / 2 ) ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑄 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) |