This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of the binomial theorem for 2 ^ N . (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom11 | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑁 C 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 2 | 1 | oveq1i | ⊢ ( 2 ↑ 𝑁 ) = ( ( 1 + 1 ) ↑ 𝑁 ) |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | binom1p | ⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + 1 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 + 1 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) ) |
| 6 | 2 5 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) ) |
| 7 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 8 | 1exp | ⊢ ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 1 ↑ 𝑘 ) = 1 ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) = ( ( 𝑁 C 𝑘 ) · 1 ) ) |
| 11 | bccl2 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝑘 ) ∈ ℕ ) | |
| 12 | 11 | nncnd | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝑘 ) ∈ ℂ ) |
| 13 | 12 | mulridd | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 C 𝑘 ) · 1 ) = ( 𝑁 C 𝑘 ) ) |
| 14 | 10 13 | eqtrd | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) = ( 𝑁 C 𝑘 ) ) |
| 15 | 14 | sumeq2i | ⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑁 C 𝑘 ) |
| 16 | 6 15 | eqtrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑁 C 𝑘 ) ) |