This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a topology J , show that a subset B satisfying the third antecedent is a basis for it. Lemma 2.3 of Munkres p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basgen | |- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) = J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgss | |- ( ( J e. Top /\ B C_ J ) -> ( topGen ` B ) C_ ( topGen ` J ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ ( topGen ` J ) ) |
| 3 | tgtop | |- ( J e. Top -> ( topGen ` J ) = J ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` J ) = J ) |
| 5 | 2 4 | sseqtrd | |- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ J ) |
| 6 | simp3 | |- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> J C_ ( topGen ` B ) ) |
|
| 7 | 5 6 | eqssd | |- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) = J ) |