This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A more general version axsepg of the axiom scheme of separation ax-sep derived from the axiom scheme of replacement ax-rep (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on z , ph (that is, variable z may occur in formula ph ). See linked statements for more information. (Contributed by NM, 11-Sep-2006) Remove dependencies on ax-9 to ax-13 . (Revised by SN, 25-Sep-2023) Use ax-sep instead (or axsepg if the extra generality is needed). (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axsepgfromrep | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep6 | ⊢ ( ∀ 𝑤 ∃* 𝑥 ( 𝑤 = 𝑥 ∧ 𝜑 ) → ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) | |
| 2 | euequ | ⊢ ∃! 𝑥 𝑥 = 𝑤 | |
| 3 | 2 | eumoi | ⊢ ∃* 𝑥 𝑥 = 𝑤 |
| 4 | equcomi | ⊢ ( 𝑤 = 𝑥 → 𝑥 = 𝑤 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝜑 ) → 𝑥 = 𝑤 ) |
| 6 | 5 | moimi | ⊢ ( ∃* 𝑥 𝑥 = 𝑤 → ∃* 𝑥 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) |
| 7 | 3 6 | ax-mp | ⊢ ∃* 𝑥 ( 𝑤 = 𝑥 ∧ 𝜑 ) |
| 8 | 1 7 | mpg | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) |
| 9 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) | |
| 10 | an12 | ⊢ ( ( 𝑤 = 𝑥 ∧ ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ( 𝑤 ∈ 𝑧 ∧ ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) | |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑤 ( 𝑤 = 𝑥 ∧ ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) |
| 12 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 13 | 12 | anbi1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 14 | 13 | equsexvw | ⊢ ( ∃ 𝑤 ( 𝑤 = 𝑥 ∧ ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| 15 | 9 11 14 | 3bitr2i | ⊢ ( ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| 16 | 15 | bibi2i | ⊢ ( ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 17 | 16 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 19 | 8 18 | mpbi | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |