This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A more general version axsepg of the axiom scheme of separation ax-sep derived from the axiom scheme of replacement ax-rep (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on z , ph (that is, variable z may occur in formula ph ). See linked statements for more information. (Contributed by NM, 11-Sep-2006) Remove dependencies on ax-9 to ax-13 . (Revised by SN, 25-Sep-2023) Use ax-sep instead (or axsepg if the extra generality is needed). (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axsepgfromrep | |- E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep6 | |- ( A. w E* x ( w = x /\ ph ) -> E. y A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) ) |
|
| 2 | euequ | |- E! x x = w |
|
| 3 | 2 | eumoi | |- E* x x = w |
| 4 | equcomi | |- ( w = x -> x = w ) |
|
| 5 | 4 | adantr | |- ( ( w = x /\ ph ) -> x = w ) |
| 6 | 5 | moimi | |- ( E* x x = w -> E* x ( w = x /\ ph ) ) |
| 7 | 3 6 | ax-mp | |- E* x ( w = x /\ ph ) |
| 8 | 1 7 | mpg | |- E. y A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) |
| 9 | df-rex | |- ( E. w e. z ( w = x /\ ph ) <-> E. w ( w e. z /\ ( w = x /\ ph ) ) ) |
|
| 10 | an12 | |- ( ( w = x /\ ( w e. z /\ ph ) ) <-> ( w e. z /\ ( w = x /\ ph ) ) ) |
|
| 11 | 10 | exbii | |- ( E. w ( w = x /\ ( w e. z /\ ph ) ) <-> E. w ( w e. z /\ ( w = x /\ ph ) ) ) |
| 12 | elequ1 | |- ( w = x -> ( w e. z <-> x e. z ) ) |
|
| 13 | 12 | anbi1d | |- ( w = x -> ( ( w e. z /\ ph ) <-> ( x e. z /\ ph ) ) ) |
| 14 | 13 | equsexvw | |- ( E. w ( w = x /\ ( w e. z /\ ph ) ) <-> ( x e. z /\ ph ) ) |
| 15 | 9 11 14 | 3bitr2i | |- ( E. w e. z ( w = x /\ ph ) <-> ( x e. z /\ ph ) ) |
| 16 | 15 | bibi2i | |- ( ( x e. y <-> E. w e. z ( w = x /\ ph ) ) <-> ( x e. y <-> ( x e. z /\ ph ) ) ) |
| 17 | 16 | albii | |- ( A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) <-> A. x ( x e. y <-> ( x e. z /\ ph ) ) ) |
| 18 | 17 | exbii | |- ( E. y A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) <-> E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) ) |
| 19 | 8 18 | mpbi | |- E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) |