This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condensed form of ax-rep . (Contributed by SN, 18-Sep-2023) (Proof shortened by Matthew House, 18-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrep6 | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep4v | ⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ) | |
| 2 | df-mo | ⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 4 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝑥 𝜑 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) | |
| 5 | 4 | bibi2i | ⊢ ( ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 8 | 1 3 7 | 3imtr4i | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |