This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Replacement slightly strengthened from axrep2 ; w may occur free in ph . (Contributed by NM, 2-Jan-1997) Remove dependency on ax-13 . (Revised by BJ, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrep3 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝑥 | |
| 3 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝑤 | |
| 4 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 | |
| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) |
| 6 | 5 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) |
| 7 | 2 6 | nfbi | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) |
| 8 | 7 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) |
| 9 | 1 8 | nfim | ⊢ Ⅎ 𝑦 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 10 | 9 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 11 | axreplem | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) | |
| 12 | axrep2 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) | |
| 13 | 10 11 12 | chvarfv | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) |