This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpownd | ⊢ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axpowndlem4 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) | |
| 2 | axpowndlem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) | |
| 3 | 2 | aecoms | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 4 | 2 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 5 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 6 | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝑦 = 𝑧 | |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) |
| 8 | el | ⊢ ∃ 𝑤 𝑥 ∈ 𝑤 | |
| 9 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) | |
| 10 | nfcvd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤 ) | |
| 11 | 9 10 | nfeld | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ∈ 𝑤 ) |
| 12 | elequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 13 | 12 | a1i | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) ) |
| 14 | 5 11 13 | cbvexd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑤 𝑥 ∈ 𝑤 ↔ ∃ 𝑦 𝑥 ∈ 𝑦 ) ) |
| 15 | 8 14 | mpbii | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 𝑥 ∈ 𝑦 ) |
| 16 | 15 | 19.8ad | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 𝑥 ∈ 𝑦 ) |
| 17 | df-ex | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝑥 ∈ 𝑦 ↔ ¬ ∀ 𝑥 ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ) | |
| 18 | 16 17 | sylib | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ) |
| 19 | 18 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ¬ ∀ 𝑥 ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ) |
| 20 | biidd | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑦 ) ) | |
| 21 | 20 | dral1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ↔ ∀ 𝑧 ¬ 𝑥 ∈ 𝑦 ) ) |
| 22 | alnex | ⊢ ( ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ) | |
| 23 | alnex | ⊢ ( ∀ 𝑧 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑧 𝑥 ∈ 𝑦 ) | |
| 24 | 21 22 23 | 3bitr3g | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 25 | nd2 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑦 𝑥 ∈ 𝑧 ) | |
| 26 | mtt | ⊢ ( ¬ ∀ 𝑦 𝑥 ∈ 𝑧 → ( ¬ ∃ 𝑧 𝑥 ∈ 𝑦 ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∃ 𝑧 𝑥 ∈ 𝑦 ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 28 | 24 27 | bitrd | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 29 | 28 | dral2 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 ∈ 𝑦 ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 31 | 19 30 | mtbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ¬ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 32 | 31 | pm2.21d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 33 | 7 32 | alrimi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 34 | 33 | 19.8ad | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 35 | 34 | a1d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 36 | 35 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 37 | 4 36 | pm2.61i | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 38 | 1 3 37 | pm2.61ii | ⊢ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |