This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom be used later. Instead, use mulcom . (Contributed by NM, 31-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axmulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs | ⊢ ℂ = ( ( R × R ) / ◡ E ) | |
| 2 | mulcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) | |
| 3 | mulcnsrec | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E · [ 〈 𝑥 , 𝑦 〉 ] ◡ E ) = [ 〈 ( ( 𝑧 ·R 𝑥 ) +R ( -1R ·R ( 𝑤 ·R 𝑦 ) ) ) , ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) ) 〉 ] ◡ E ) | |
| 4 | mulcomsr | ⊢ ( 𝑥 ·R 𝑧 ) = ( 𝑧 ·R 𝑥 ) | |
| 5 | mulcomsr | ⊢ ( 𝑦 ·R 𝑤 ) = ( 𝑤 ·R 𝑦 ) | |
| 6 | 5 | oveq2i | ⊢ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) = ( -1R ·R ( 𝑤 ·R 𝑦 ) ) |
| 7 | 4 6 | oveq12i | ⊢ ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) = ( ( 𝑧 ·R 𝑥 ) +R ( -1R ·R ( 𝑤 ·R 𝑦 ) ) ) |
| 8 | mulcomsr | ⊢ ( 𝑦 ·R 𝑧 ) = ( 𝑧 ·R 𝑦 ) | |
| 9 | mulcomsr | ⊢ ( 𝑥 ·R 𝑤 ) = ( 𝑤 ·R 𝑥 ) | |
| 10 | 8 9 | oveq12i | ⊢ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) = ( ( 𝑧 ·R 𝑦 ) +R ( 𝑤 ·R 𝑥 ) ) |
| 11 | addcomsr | ⊢ ( ( 𝑧 ·R 𝑦 ) +R ( 𝑤 ·R 𝑥 ) ) = ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) ) | |
| 12 | 10 11 | eqtri | ⊢ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) = ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) ) |
| 13 | 1 2 3 7 12 | ecovcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |