This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom be used later. Instead, use mulcom . (Contributed by NM, 31-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axmulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs | |- CC = ( ( R. X. R. ) /. `' _E ) |
|
| 2 | mulcnsrec | |- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( [ <. x , y >. ] `' _E x. [ <. z , w >. ] `' _E ) = [ <. ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) , ( ( y .R z ) +R ( x .R w ) ) >. ] `' _E ) |
|
| 3 | mulcnsrec | |- ( ( ( z e. R. /\ w e. R. ) /\ ( x e. R. /\ y e. R. ) ) -> ( [ <. z , w >. ] `' _E x. [ <. x , y >. ] `' _E ) = [ <. ( ( z .R x ) +R ( -1R .R ( w .R y ) ) ) , ( ( w .R x ) +R ( z .R y ) ) >. ] `' _E ) |
|
| 4 | mulcomsr | |- ( x .R z ) = ( z .R x ) |
|
| 5 | mulcomsr | |- ( y .R w ) = ( w .R y ) |
|
| 6 | 5 | oveq2i | |- ( -1R .R ( y .R w ) ) = ( -1R .R ( w .R y ) ) |
| 7 | 4 6 | oveq12i | |- ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) = ( ( z .R x ) +R ( -1R .R ( w .R y ) ) ) |
| 8 | mulcomsr | |- ( y .R z ) = ( z .R y ) |
|
| 9 | mulcomsr | |- ( x .R w ) = ( w .R x ) |
|
| 10 | 8 9 | oveq12i | |- ( ( y .R z ) +R ( x .R w ) ) = ( ( z .R y ) +R ( w .R x ) ) |
| 11 | addcomsr | |- ( ( z .R y ) +R ( w .R x ) ) = ( ( w .R x ) +R ( z .R y ) ) |
|
| 12 | 10 11 | eqtri | |- ( ( y .R z ) +R ( x .R w ) ) = ( ( w .R x ) +R ( z .R y ) ) |
| 13 | 1 2 3 7 12 | ecovcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |