This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass be used later. Instead, use addass . (Contributed by NM, 2-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axaddass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs | ⊢ ℂ = ( ( R × R ) / ◡ E ) | |
| 2 | addcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E + [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( 𝑥 +R 𝑧 ) , ( 𝑦 +R 𝑤 ) 〉 ] ◡ E ) | |
| 3 | addcnsrec | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E + [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) | |
| 4 | addcnsrec | ⊢ ( ( ( ( 𝑥 +R 𝑧 ) ∈ R ∧ ( 𝑦 +R 𝑤 ) ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 ( 𝑥 +R 𝑧 ) , ( 𝑦 +R 𝑤 ) 〉 ] ◡ E + [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 +R 𝑧 ) +R 𝑣 ) , ( ( 𝑦 +R 𝑤 ) +R 𝑢 ) 〉 ] ◡ E ) | |
| 5 | addcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E + [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) = [ 〈 ( 𝑥 +R ( 𝑧 +R 𝑣 ) ) , ( 𝑦 +R ( 𝑤 +R 𝑢 ) ) 〉 ] ◡ E ) | |
| 6 | addclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 +R 𝑧 ) ∈ R ) | |
| 7 | addclsr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 +R 𝑤 ) ∈ R ) | |
| 8 | 6 7 | anim12i | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 +R 𝑧 ) ∈ R ∧ ( 𝑦 +R 𝑤 ) ∈ R ) ) |
| 9 | 8 | an4s | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 +R 𝑧 ) ∈ R ∧ ( 𝑦 +R 𝑤 ) ∈ R ) ) |
| 10 | addclsr | ⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 +R 𝑣 ) ∈ R ) | |
| 11 | addclsr | ⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 +R 𝑢 ) ∈ R ) | |
| 12 | 10 11 | anim12i | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
| 13 | 12 | an4s | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
| 14 | addasssr | ⊢ ( ( 𝑥 +R 𝑧 ) +R 𝑣 ) = ( 𝑥 +R ( 𝑧 +R 𝑣 ) ) | |
| 15 | addasssr | ⊢ ( ( 𝑦 +R 𝑤 ) +R 𝑢 ) = ( 𝑦 +R ( 𝑤 +R 𝑢 ) ) | |
| 16 | 1 2 3 4 5 9 13 14 15 | ecovass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |