This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlsuprexch.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| hlsuprexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| hlsuprexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| hlsuprexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | hlsuprexch | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlsuprexch.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | hlsuprexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | hlsuprexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | hlsuprexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
| 8 | 1 2 5 3 6 7 4 | ishlat2 | ⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝐾 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) ) ) ) |
| 9 | simprl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝐾 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ) | |
| 10 | 8 9 | sylbi | ⊢ ( 𝐾 ∈ HL → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ) |
| 11 | neeq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≠ 𝑦 ↔ 𝑃 ≠ 𝑦 ) ) | |
| 12 | neeq2 | ⊢ ( 𝑥 = 𝑃 → ( 𝑧 ≠ 𝑥 ↔ 𝑧 ≠ 𝑃 ) ) | |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∨ 𝑦 ) = ( 𝑃 ∨ 𝑦 ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑥 = 𝑃 → ( 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ↔ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) |
| 15 | 12 14 | 3anbi13d | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ↔ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑥 = 𝑃 → ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ) |
| 17 | 11 16 | imbi12d | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ↔ ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ) ) |
| 18 | breq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≤ 𝑧 ↔ 𝑃 ≤ 𝑧 ) ) | |
| 19 | 18 | notbid | ⊢ ( 𝑥 = 𝑃 → ( ¬ 𝑥 ≤ 𝑧 ↔ ¬ 𝑃 ≤ 𝑧 ) ) |
| 20 | breq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ↔ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) ) | |
| 21 | 19 20 | anbi12d | ⊢ ( 𝑥 = 𝑃 → ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) ↔ ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = 𝑃 → ( 𝑧 ∨ 𝑥 ) = ( 𝑧 ∨ 𝑃 ) ) | |
| 23 | 22 | breq2d | ⊢ ( 𝑥 = 𝑃 → ( 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ↔ 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) |
| 24 | 21 23 | imbi12d | ⊢ ( 𝑥 = 𝑃 → ( ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑥 = 𝑃 → ( ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
| 26 | 17 25 | anbi12d | ⊢ ( 𝑥 = 𝑃 → ( ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ↔ ( ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) ) |
| 27 | neeq2 | ⊢ ( 𝑦 = 𝑄 → ( 𝑃 ≠ 𝑦 ↔ 𝑃 ≠ 𝑄 ) ) | |
| 28 | neeq2 | ⊢ ( 𝑦 = 𝑄 → ( 𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑄 ) ) | |
| 29 | oveq2 | ⊢ ( 𝑦 = 𝑄 → ( 𝑃 ∨ 𝑦 ) = ( 𝑃 ∨ 𝑄 ) ) | |
| 30 | 29 | breq2d | ⊢ ( 𝑦 = 𝑄 → ( 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ↔ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 31 | 28 30 | 3anbi23d | ⊢ ( 𝑦 = 𝑄 → ( ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ↔ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 32 | 31 | rexbidv | ⊢ ( 𝑦 = 𝑄 → ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 33 | 27 32 | imbi12d | ⊢ ( 𝑦 = 𝑄 → ( ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ↔ ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
| 34 | oveq2 | ⊢ ( 𝑦 = 𝑄 → ( 𝑧 ∨ 𝑦 ) = ( 𝑧 ∨ 𝑄 ) ) | |
| 35 | 34 | breq2d | ⊢ ( 𝑦 = 𝑄 → ( 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ↔ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) ) |
| 36 | 35 | anbi2d | ⊢ ( 𝑦 = 𝑄 → ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) ↔ ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) ) ) |
| 37 | breq1 | ⊢ ( 𝑦 = 𝑄 → ( 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ↔ 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) | |
| 38 | 36 37 | imbi12d | ⊢ ( 𝑦 = 𝑄 → ( ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
| 39 | 38 | ralbidv | ⊢ ( 𝑦 = 𝑄 → ( ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
| 40 | 33 39 | anbi12d | ⊢ ( 𝑦 = 𝑄 → ( ( ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ↔ ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) ) |
| 41 | 26 40 | rspc2v | ⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) → ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) ) |
| 42 | 10 41 | mpan9 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
| 43 | 42 | 3impb | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |