This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atnlej.l | |- .<_ = ( le ` K ) |
|
| atnlej.j | |- .\/ = ( join ` K ) |
||
| atnlej.a | |- A = ( Atoms ` K ) |
||
| Assertion | atnlej2 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> P =/= R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnlej.l | |- .<_ = ( le ` K ) |
|
| 2 | atnlej.j | |- .\/ = ( join ` K ) |
|
| 3 | atnlej.a | |- A = ( Atoms ` K ) |
|
| 4 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> K e. Lat ) |
| 6 | simp21 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> P e. A ) |
|
| 7 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 8 | 7 3 | atbase | |- ( P e. A -> P e. ( Base ` K ) ) |
| 9 | 6 8 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> P e. ( Base ` K ) ) |
| 10 | simp22 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> Q e. A ) |
|
| 11 | 7 3 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) ) |
| 12 | 10 11 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> Q e. ( Base ` K ) ) |
| 13 | simp23 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> R e. A ) |
|
| 14 | 7 3 | atbase | |- ( R e. A -> R e. ( Base ` K ) ) |
| 15 | 13 14 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> R e. ( Base ` K ) ) |
| 16 | simp3 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> -. P .<_ ( Q .\/ R ) ) |
|
| 17 | 7 1 2 | latnlej1r | |- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) /\ -. P .<_ ( Q .\/ R ) ) -> P =/= R ) |
| 18 | 5 9 12 15 16 17 | syl131anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. P .<_ ( Q .\/ R ) ) -> P =/= R ) |