This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in Kalmbach p. 140. Also Definition 3.4-2 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hatomic | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 ≠ 0ℋ ) → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ≠ 0ℋ ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ≠ 0ℋ ) ) | |
| 2 | sseq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) | |
| 3 | 2 | rexbidv | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ↔ ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) ) |
| 5 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 6 | 5 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 7 | 6 | hatomici | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) |
| 8 | 4 7 | dedth | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 ≠ 0ℋ ) → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) |