This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrcmp.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrcmp.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrcmp.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrcmp | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrcmp.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrcmp.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrcmp.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝐾 ∈ Poset ) | |
| 5 | simpl23 | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑍 ∈ 𝐵 ) | |
| 6 | simpl21 | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simpl3l | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑍 𝐶 𝑋 ) | |
| 8 | 1 3 | cvrne | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 𝐶 𝑋 ) → 𝑍 ≠ 𝑋 ) |
| 9 | 4 5 6 7 8 | syl31anc | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑍 ≠ 𝑋 ) |
| 10 | 1 2 3 | cvrle | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 𝐶 𝑋 ) → 𝑍 ≤ 𝑋 ) |
| 11 | 4 5 6 7 10 | syl31anc | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑍 ≤ 𝑋 ) |
| 12 | simpr | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) | |
| 13 | simpl22 | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ 𝐵 ) | |
| 14 | simpl3r | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑍 𝐶 𝑌 ) | |
| 15 | 1 2 3 | cvrnbtwn4 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 𝐶 𝑌 ) → ( ( 𝑍 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ↔ ( 𝑍 = 𝑋 ∨ 𝑋 = 𝑌 ) ) ) |
| 16 | 4 5 13 6 14 15 | syl131anc | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑍 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ↔ ( 𝑍 = 𝑋 ∨ 𝑋 = 𝑌 ) ) ) |
| 17 | 11 12 16 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑍 = 𝑋 ∨ 𝑋 = 𝑌 ) ) |
| 18 | neor | ⊢ ( ( 𝑍 = 𝑋 ∨ 𝑋 = 𝑌 ) ↔ ( 𝑍 ≠ 𝑋 → 𝑋 = 𝑌 ) ) | |
| 19 | 17 18 | sylib | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑍 ≠ 𝑋 → 𝑋 = 𝑌 ) ) |
| 20 | 9 19 | mpd | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 = 𝑌 ) |
| 21 | 20 | ex | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) → ( 𝑋 ≤ 𝑌 → 𝑋 = 𝑌 ) ) |
| 22 | simp1 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) → 𝐾 ∈ Poset ) | |
| 23 | simp21 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) → 𝑋 ∈ 𝐵 ) | |
| 24 | 1 2 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) → 𝑋 ≤ 𝑋 ) |
| 26 | breq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 27 | 25 26 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) → ( 𝑋 = 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 28 | 21 27 | impbid | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑍 𝐶 𝑋 ∧ 𝑍 𝐶 𝑌 ) ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌 ) ) |