This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atsseq | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atne0 | ⊢ ( 𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ≠ 0ℋ ) |
| 3 | atelch | ⊢ ( 𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | |
| 4 | atss | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐴 = 0ℋ ) ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐴 = 0ℋ ) ) ) |
| 6 | 5 | imp | ⊢ ( ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 = 𝐵 ∨ 𝐴 = 0ℋ ) ) |
| 7 | 6 | ord | ⊢ ( ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) ∧ 𝐴 ⊆ 𝐵 ) → ( ¬ 𝐴 = 𝐵 → 𝐴 = 0ℋ ) ) |
| 8 | 7 | necon1ad | ⊢ ( ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ≠ 0ℋ → 𝐴 = 𝐵 ) ) |
| 9 | 2 8 | mpd | ⊢ ( ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 = 𝐵 ) |
| 10 | 9 | ex | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ) |
| 11 | eqimss | ⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 12 | 10 11 | impbid1 | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵 ) ) |