This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem3.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| aomclem3.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | ||
| aomclem3.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | ||
| aomclem3.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | ||
| aomclem3.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | ||
| aomclem3.su | ⊢ ( 𝜑 → dom 𝑧 = suc ∪ dom 𝑧 ) | ||
| aomclem3.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | ||
| aomclem3.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| aomclem3.za | ⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) | ||
| aomclem3.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | ||
| Assertion | aomclem3 | ⊢ ( 𝜑 → 𝐸 We ( 𝑅1 ‘ dom 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem3.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| 2 | aomclem3.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | |
| 3 | aomclem3.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | |
| 4 | aomclem3.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | |
| 5 | aomclem3.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | |
| 6 | aomclem3.su | ⊢ ( 𝜑 → dom 𝑧 = suc ∪ dom 𝑧 ) | |
| 7 | aomclem3.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | |
| 8 | aomclem3.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 9 | aomclem3.za | ⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) | |
| 10 | aomclem3.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 11 | rneq | ⊢ ( 𝑎 = 𝑐 → ran 𝑎 = ran 𝑐 ) | |
| 12 | 11 | difeq2d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) = ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑎 = 𝑐 → ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) = ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) |
| 14 | 13 | cbvmptv | ⊢ ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) = ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) |
| 15 | recseq | ⊢ ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) = ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) → recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) ) |
| 17 | 3 16 | eqtri | ⊢ 𝐷 = recs ( ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) ) |
| 18 | fvexd | ⊢ ( 𝜑 → ( 𝑅1 ‘ dom 𝑧 ) ∈ V ) | |
| 19 | 1 2 5 6 7 8 9 10 | aomclem2 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ) |
| 20 | neeq1 | ⊢ ( 𝑎 = 𝑑 → ( 𝑎 ≠ ∅ ↔ 𝑑 ≠ ∅ ) ) | |
| 21 | fveq2 | ⊢ ( 𝑎 = 𝑑 → ( 𝐶 ‘ 𝑎 ) = ( 𝐶 ‘ 𝑑 ) ) | |
| 22 | id | ⊢ ( 𝑎 = 𝑑 → 𝑎 = 𝑑 ) | |
| 23 | 21 22 | eleq12d | ⊢ ( 𝑎 = 𝑑 → ( ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ↔ ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) |
| 24 | 20 23 | imbi12d | ⊢ ( 𝑎 = 𝑑 → ( ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ↔ ( 𝑑 ≠ ∅ → ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) ) |
| 25 | 24 | cbvralvw | ⊢ ( ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑑 ≠ ∅ → ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) |
| 26 | 19 25 | sylib | ⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑑 ≠ ∅ → ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) |
| 27 | 17 18 26 4 | dnwech | ⊢ ( 𝜑 → 𝐸 We ( 𝑅1 ‘ dom 𝑧 ) ) |