This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem5.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| aomclem5.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
||
| aomclem5.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
||
| aomclem5.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
||
| aomclem5.f | |- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
||
| aomclem5.g | |- G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) |
||
| aomclem5.on | |- ( ph -> dom z e. On ) |
||
| aomclem5.we | |- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
||
| aomclem5.a | |- ( ph -> A e. On ) |
||
| aomclem5.za | |- ( ph -> dom z C_ A ) |
||
| aomclem5.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
||
| Assertion | aomclem5 | |- ( ph -> G We ( R1 ` dom z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem5.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| 2 | aomclem5.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
|
| 3 | aomclem5.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
|
| 4 | aomclem5.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
|
| 5 | aomclem5.f | |- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
|
| 6 | aomclem5.g | |- G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) |
|
| 7 | aomclem5.on | |- ( ph -> dom z e. On ) |
|
| 8 | aomclem5.we | |- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
|
| 9 | aomclem5.a | |- ( ph -> A e. On ) |
|
| 10 | aomclem5.za | |- ( ph -> dom z C_ A ) |
|
| 11 | aomclem5.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
|
| 12 | 7 | adantr | |- ( ( ph /\ dom z = U. dom z ) -> dom z e. On ) |
| 13 | simpr | |- ( ( ph /\ dom z = U. dom z ) -> dom z = U. dom z ) |
|
| 14 | 8 | adantr | |- ( ( ph /\ dom z = U. dom z ) -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
| 15 | 5 12 13 14 | aomclem4 | |- ( ( ph /\ dom z = U. dom z ) -> F We ( R1 ` dom z ) ) |
| 16 | iftrue | |- ( dom z = U. dom z -> if ( dom z = U. dom z , F , E ) = F ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) = F ) |
| 18 | eqidd | |- ( ( ph /\ dom z = U. dom z ) -> ( R1 ` dom z ) = ( R1 ` dom z ) ) |
|
| 19 | 17 18 | weeq12d | |- ( ( ph /\ dom z = U. dom z ) -> ( if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) <-> F We ( R1 ` dom z ) ) ) |
| 20 | 15 19 | mpbird | |- ( ( ph /\ dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) ) |
| 21 | 7 | adantr | |- ( ( ph /\ -. dom z = U. dom z ) -> dom z e. On ) |
| 22 | eloni | |- ( dom z e. On -> Ord dom z ) |
|
| 23 | orduniorsuc | |- ( Ord dom z -> ( dom z = U. dom z \/ dom z = suc U. dom z ) ) |
|
| 24 | 7 22 23 | 3syl | |- ( ph -> ( dom z = U. dom z \/ dom z = suc U. dom z ) ) |
| 25 | 24 | orcanai | |- ( ( ph /\ -. dom z = U. dom z ) -> dom z = suc U. dom z ) |
| 26 | 8 | adantr | |- ( ( ph /\ -. dom z = U. dom z ) -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
| 27 | 9 | adantr | |- ( ( ph /\ -. dom z = U. dom z ) -> A e. On ) |
| 28 | 10 | adantr | |- ( ( ph /\ -. dom z = U. dom z ) -> dom z C_ A ) |
| 29 | 11 | adantr | |- ( ( ph /\ -. dom z = U. dom z ) -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
| 30 | 1 2 3 4 21 25 26 27 28 29 | aomclem3 | |- ( ( ph /\ -. dom z = U. dom z ) -> E We ( R1 ` dom z ) ) |
| 31 | iffalse | |- ( -. dom z = U. dom z -> if ( dom z = U. dom z , F , E ) = E ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ -. dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) = E ) |
| 33 | eqidd | |- ( ( ph /\ -. dom z = U. dom z ) -> ( R1 ` dom z ) = ( R1 ` dom z ) ) |
|
| 34 | 32 33 | weeq12d | |- ( ( ph /\ -. dom z = U. dom z ) -> ( if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) <-> E We ( R1 ` dom z ) ) ) |
| 35 | 30 34 | mpbird | |- ( ( ph /\ -. dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) ) |
| 36 | 20 35 | pm2.61dan | |- ( ph -> if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) ) |
| 37 | weinxp | |- ( if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) <-> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) |
|
| 38 | 36 37 | sylib | |- ( ph -> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) |
| 39 | weeq1 | |- ( G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) -> ( G We ( R1 ` dom z ) <-> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) ) |
|
| 40 | 6 39 | ax-mp | |- ( G We ( R1 ` dom z ) <-> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) |
| 41 | 38 40 | sylibr | |- ( ph -> G We ( R1 ` dom z ) ) |