This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Successor case 2, a choice function for subsets of ( R1dom z ) . (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem2.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| aomclem2.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | ||
| aomclem2.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | ||
| aomclem2.su | ⊢ ( 𝜑 → dom 𝑧 = suc ∪ dom 𝑧 ) | ||
| aomclem2.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | ||
| aomclem2.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| aomclem2.za | ⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) | ||
| aomclem2.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | ||
| Assertion | aomclem2 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem2.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| 2 | aomclem2.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | |
| 3 | aomclem2.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | |
| 4 | aomclem2.su | ⊢ ( 𝜑 → dom 𝑧 = suc ∪ dom 𝑧 ) | |
| 5 | aomclem2.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | |
| 6 | aomclem2.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 7 | aomclem2.za | ⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) | |
| 8 | aomclem2.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 9 | vex | ⊢ 𝑎 ∈ V | |
| 10 | 3 6 | jca | ⊢ ( 𝜑 → ( dom 𝑧 ∈ On ∧ 𝐴 ∈ On ) ) |
| 11 | r1ord3 | ⊢ ( ( dom 𝑧 ∈ On ∧ 𝐴 ∈ On ) → ( dom 𝑧 ⊆ 𝐴 → ( 𝑅1 ‘ dom 𝑧 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 12 | 10 7 11 | sylc | ⊢ ( 𝜑 → ( 𝑅1 ‘ dom 𝑧 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 13 | 12 | sspwd | ⊢ ( 𝜑 → 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| 14 | 13 | sseld | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) → 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ) |
| 15 | rsp | ⊢ ( ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) ) | |
| 16 | 8 14 15 | sylsyld | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) → ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) ) |
| 17 | 16 | 3imp | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) |
| 18 | 17 | eldifad | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑦 ‘ 𝑎 ) ∈ ( 𝒫 𝑎 ∩ Fin ) ) |
| 19 | inss1 | ⊢ ( 𝒫 𝑎 ∩ Fin ) ⊆ 𝒫 𝑎 | |
| 20 | 19 | sseli | ⊢ ( ( 𝑦 ‘ 𝑎 ) ∈ ( 𝒫 𝑎 ∩ Fin ) → ( 𝑦 ‘ 𝑎 ) ∈ 𝒫 𝑎 ) |
| 21 | 20 | elpwid | ⊢ ( ( 𝑦 ‘ 𝑎 ) ∈ ( 𝒫 𝑎 ∩ Fin ) → ( 𝑦 ‘ 𝑎 ) ⊆ 𝑎 ) |
| 22 | 18 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑦 ‘ 𝑎 ) ⊆ 𝑎 ) |
| 23 | 1 3 4 5 | aomclem1 | ⊢ ( 𝜑 → 𝐵 Or ( 𝑅1 ‘ dom 𝑧 ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → 𝐵 Or ( 𝑅1 ‘ dom 𝑧 ) ) |
| 25 | inss2 | ⊢ ( 𝒫 𝑎 ∩ Fin ) ⊆ Fin | |
| 26 | 25 18 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑦 ‘ 𝑎 ) ∈ Fin ) |
| 27 | eldifsni | ⊢ ( ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) → ( 𝑦 ‘ 𝑎 ) ≠ ∅ ) | |
| 28 | 17 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑦 ‘ 𝑎 ) ≠ ∅ ) |
| 29 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) → 𝑎 ⊆ ( 𝑅1 ‘ dom 𝑧 ) ) | |
| 30 | 29 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ ( 𝑅1 ‘ dom 𝑧 ) ) |
| 31 | 22 30 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑦 ‘ 𝑎 ) ⊆ ( 𝑅1 ‘ dom 𝑧 ) ) |
| 32 | fisupcl | ⊢ ( ( 𝐵 Or ( 𝑅1 ‘ dom 𝑧 ) ∧ ( ( 𝑦 ‘ 𝑎 ) ∈ Fin ∧ ( 𝑦 ‘ 𝑎 ) ≠ ∅ ∧ ( 𝑦 ‘ 𝑎 ) ⊆ ( 𝑅1 ‘ dom 𝑧 ) ) ) → sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ∈ ( 𝑦 ‘ 𝑎 ) ) | |
| 33 | 24 26 28 31 32 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ∈ ( 𝑦 ‘ 𝑎 ) ) |
| 34 | 22 33 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ∈ 𝑎 ) |
| 35 | 2 | fvmpt2 | ⊢ ( ( 𝑎 ∈ V ∧ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ∈ 𝑎 ) → ( 𝐶 ‘ 𝑎 ) = sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) |
| 36 | 9 34 35 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝐶 ‘ 𝑎 ) = sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) |
| 37 | 36 34 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ∧ 𝑎 ≠ ∅ ) → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) |
| 38 | 37 | 3exp | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) → ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ) ) |
| 39 | 38 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ) |