This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Successor case 2, a choice function for subsets of ( R1dom z ) . (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem2.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| aomclem2.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
||
| aomclem2.on | |- ( ph -> dom z e. On ) |
||
| aomclem2.su | |- ( ph -> dom z = suc U. dom z ) |
||
| aomclem2.we | |- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
||
| aomclem2.a | |- ( ph -> A e. On ) |
||
| aomclem2.za | |- ( ph -> dom z C_ A ) |
||
| aomclem2.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
||
| Assertion | aomclem2 | |- ( ph -> A. a e. ~P ( R1 ` dom z ) ( a =/= (/) -> ( C ` a ) e. a ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem2.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| 2 | aomclem2.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
|
| 3 | aomclem2.on | |- ( ph -> dom z e. On ) |
|
| 4 | aomclem2.su | |- ( ph -> dom z = suc U. dom z ) |
|
| 5 | aomclem2.we | |- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
|
| 6 | aomclem2.a | |- ( ph -> A e. On ) |
|
| 7 | aomclem2.za | |- ( ph -> dom z C_ A ) |
|
| 8 | aomclem2.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
|
| 9 | vex | |- a e. _V |
|
| 10 | 3 6 | jca | |- ( ph -> ( dom z e. On /\ A e. On ) ) |
| 11 | r1ord3 | |- ( ( dom z e. On /\ A e. On ) -> ( dom z C_ A -> ( R1 ` dom z ) C_ ( R1 ` A ) ) ) |
|
| 12 | 10 7 11 | sylc | |- ( ph -> ( R1 ` dom z ) C_ ( R1 ` A ) ) |
| 13 | 12 | sspwd | |- ( ph -> ~P ( R1 ` dom z ) C_ ~P ( R1 ` A ) ) |
| 14 | 13 | sseld | |- ( ph -> ( a e. ~P ( R1 ` dom z ) -> a e. ~P ( R1 ` A ) ) ) |
| 15 | rsp | |- ( A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) -> ( a e. ~P ( R1 ` A ) -> ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) ) |
|
| 16 | 8 14 15 | sylsyld | |- ( ph -> ( a e. ~P ( R1 ` dom z ) -> ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) ) |
| 17 | 16 | 3imp | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) |
| 18 | 17 | eldifad | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) e. ( ~P a i^i Fin ) ) |
| 19 | inss1 | |- ( ~P a i^i Fin ) C_ ~P a |
|
| 20 | 19 | sseli | |- ( ( y ` a ) e. ( ~P a i^i Fin ) -> ( y ` a ) e. ~P a ) |
| 21 | 20 | elpwid | |- ( ( y ` a ) e. ( ~P a i^i Fin ) -> ( y ` a ) C_ a ) |
| 22 | 18 21 | syl | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) C_ a ) |
| 23 | 1 3 4 5 | aomclem1 | |- ( ph -> B Or ( R1 ` dom z ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> B Or ( R1 ` dom z ) ) |
| 25 | inss2 | |- ( ~P a i^i Fin ) C_ Fin |
|
| 26 | 25 18 | sselid | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) e. Fin ) |
| 27 | eldifsni | |- ( ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) -> ( y ` a ) =/= (/) ) |
|
| 28 | 17 27 | syl | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) =/= (/) ) |
| 29 | elpwi | |- ( a e. ~P ( R1 ` dom z ) -> a C_ ( R1 ` dom z ) ) |
|
| 30 | 29 | 3ad2ant2 | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> a C_ ( R1 ` dom z ) ) |
| 31 | 22 30 | sstrd | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) C_ ( R1 ` dom z ) ) |
| 32 | fisupcl | |- ( ( B Or ( R1 ` dom z ) /\ ( ( y ` a ) e. Fin /\ ( y ` a ) =/= (/) /\ ( y ` a ) C_ ( R1 ` dom z ) ) ) -> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. ( y ` a ) ) |
|
| 33 | 24 26 28 31 32 | syl13anc | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. ( y ` a ) ) |
| 34 | 22 33 | sseldd | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. a ) |
| 35 | 2 | fvmpt2 | |- ( ( a e. _V /\ sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. a ) -> ( C ` a ) = sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
| 36 | 9 34 35 | sylancr | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( C ` a ) = sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
| 37 | 36 34 | eqeltrd | |- ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( C ` a ) e. a ) |
| 38 | 37 | 3exp | |- ( ph -> ( a e. ~P ( R1 ` dom z ) -> ( a =/= (/) -> ( C ` a ) e. a ) ) ) |
| 39 | 38 | ralrimiv | |- ( ph -> A. a e. ~P ( R1 ` dom z ) ( a =/= (/) -> ( C ` a ) e. a ) ) |